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Thermo-viscoeclastic Stressesvin a Sphere

- with an Ablating Cavity*,.

T. G. Rogers and E. H, Lee
Brovn University

Abstract

'Thermo-viscoelastic stresses in a sphere with a con-

entric spherical cavity are analysed for uniform initlial

temperature, and cavity ablation at an elevated constant surface
temperature. The material 1s conslidered to be thermo-rheological-
ly simple, with ﬁroperties prescribed by an isothermal relaxation
modulus function and a relaxation time scale factor given as a
function of the temberature. The theory is developed in the form
of integral equations in time for the radial stress gradlent.
. These lend themselves to numerical solution, and an evample is
presented of a sphere of polymethyl—methacrylate for which the
relaxation modulus function and temperatnre-log(time) shift func-
tion are available. Features of the solution are discussed, and
compafed with a corresponding elastic case and the previously

published solution for an ablating solid sphere.

This work was sponsored by the Bureau of Weapons, Department
of the Navy, under Contract NOrd 1859% with Brown University
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"Introduction - : ' -

This paper is concerned with thermai stresses in a
linear viscoelastic material in which increase in temperatureee
produces thermal expaﬁsion with coefficient @, and also’contracts
the time scele of the relaxation modulus (ahd creen compliance)
by a faetor"¢(T); where_T 1s the temperature measured above a
base temberature T,. The response to stress at different '
temperatures of many materials can be expr essed by relatlons of
this type [1]*, termed thermo—rheologically simple behavior by
Schwarzl and Staverman [2], and known in tﬁe chemical literature
as the Williams-Landel-Ferry law. On the common log(time) plot,
this correéponds to change 1n temperature causing a shift of the
relaxation curve along the log(time) axls without change of.shape.

In order to deal with varying (time-dependent) tempera-
ture, with the resulting contraction of the time scale thus
itself a functien of time, it is convenient [3] to define a
reduced time £ which 1ncerporates the varying écaie factor Q(T),
so that in terms of ¥ the viscoelastic strese-strain relation at

varying temperature has the same form as the isothermal law at

the base temperature T_:

: e, ,(x, €
834(x,8) = | 26(§-%) e (. 0) ag , (1)
(o

where X denotes the triplet of rectangular Cartesian coordinates

Numbers in square brackets refer to the biblit \apay at the
end of the paper.
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(zl’xz’XB)’ 844 and ey 4 are the strecs and strain deviators
respectively, and G(t) i3 the relaxation modulus in shear at the
base temperatﬁre To*. The reduced time E(x,t), where t is the
real time, is determined in terms of the varylng scale factor
o[T(x,t)] by the relation |

. |
E(x,t) = [ olT(x,t?)lat’. (2)

o
During the course of the analysis we shall find it

convenient to consider a dépendent variable, for example the

stress deviator, sometimes to be a function of the reduced time

E:sij(x,E), and sometimes expressed in terms of the real time,

and we shzll use the same function notation: Sij(x’t)‘ This

- signifies replacing £ in Sij(x,E) by E(x,t).  The functional form

is thus different, but no confusion need arise since the independ-

ent variables_will either be stated or be clear from theicontext.'

ds, .
Space derivatives, e.g. Eiii’ will always signify differentiation

J

at constant real time t, since they will arise only from the

equilibriﬁm and displacement-strain relations, which inveolve

space gradients at fixed real time. Since a transformation from

t to & may be involved in, for example, the interpretation of an

integral over reduced time of a épace derivative,_a distinguishing

function notation would become cumbersome in the present problem.
The integral operator form of the viscoelastic stress-

strain relation (1) is utilized because of 1lts generality

*‘ ‘ .
Only the relationship (1) for shear type deformation has been
stated since we shall assume the response 1ln dilatation-to be
elastlc.
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compared with the low-order differential operator laws commonly
‘considered inAviscoelastic stress analysis sblutions. This
genérality permits accurate representation of material response
over the equlvalent of a wide frequence band; and ié needed in
thermal-streSs problems because of the sensitivity of the scale
factor ¢ to temperature change. Mbreover, the integral operator
law can lead to representation of the stréss distribution sought
as the solution of‘an.integral equation with its kernel dépendent
on the relaxation modulus G(t). Numerical solution by finite

sum methods may prove convenient [4], and permits direct substitu-
.tion of the experimentally measured material characteristiés into
the analysis. _ ‘

In this paper_we treat the problem of a sphere with a
concentric spherical cavity. The temperature is initially
uniform throughout, when that at the cavity surface increases
discontinuously to a value which is thereafter maintalned
constant, -and the cavity ablates with steadily increasing radius
until it reaches the outer radius,-and theAviscoelastic material

has then disappeared. Such a problem falls within the general

framework of the method devised by Mukl and Sternberg [5], but
the moving boundary rules out applicatibn of the Laplace trans-
form, and integral operator expressions must be maintained to
yield integral equation formulations which can cope with the
moving boundary fh]. This aspect of the analysis was developed
in [6], but it was applied there only to the problem of a solid

sphere in which the couplihg between the elemental spherical
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shells happéns effectively to disabpear begausé of symmetry
requirements atAthé center, In the present ﬁroblem‘the spherical
shell solutions are linked by the stress boundary conditions at
the Surfaces,’ahd this leads to coupling in the space variables
of the 1ntegrélvequations_1n time, and so to a muchbmore~f
challengihg computatiénal task. This coupling, incidentally,
rules out the transform approgch even for fixed boundaries,

since the resulting intégral equation is, ih general,'nd ionger

of convolution type, as pointed out by Sternberg and Gurtin [7].

The spheriéally symmetric stress field.

A body in the fbrm of a spherical shell is considéred,
loadgd uniformly over each surface and_subjected to a radially
symmetrical temperature distribution T(r,t), where r is the
radius. A brief developmenﬁ'of the theory given in [6] is
presented here to érovide a framework for discussion of the new
solution. Symmetry determines the principal stresses to be the .

radial stress dr and the circumferential stréss o] repeatéd. The

(2]
sum of the principal stresses 1s therefore:
= ¢ '
¢ = d +20,. N (3)
. The single non-trivially satisfied equilibrium equation in

d
r

5=+ &(e -9, = o. | (&)

r
Symmetry determines a single independent stress deviator cempo-
nent, and a corresponding strain deviater compenent, which for

- convenience can be.replaced by principal stress and strain
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differences. With u(r,t) as the radial displacement, the

equivalent of (1) then becomes

3 .
0g(r.8) - o (r8) = [ 2a(tgn) Yr (2 - Wiagr  (5)
A :
which, using (%), can be written in the form
_ N ;
== - [ e S (3@ e (6)
o

Note that, as mentioned in the Introduction, the r derivatives
operate on functidns of r and t, but transformation td~r and
is implied for the integration. oy can be eliminated from (3)
~and (4) to give: |

25'(r3dr) = % . o (7)

Elastic dilatational respbnse'is assumed, together with thermal

expansion with constant coefficient a, giving the relation
~fou , 2u | ‘ |
6 = _)g([g; = -'F - 3(1@]: (8)

where k is the bulk modulus and © the increase in temperature

over the uniform initial temperature. Integration of (7) at

constant real time and substitution for ¢ from (8) yielas
r3or(r;t)7[a(t) Pola(t),5] = 3elr®u(r,t)-[a(t) Pulalt),t]

30§ p26(p,t)dp] )
_. ‘a(t)P p:v Pl A (9

in which conditions at a ®oundary radius a(t) give the lower
limits of the integrals. Substitution for u(r,t) from (9) into

(6) gives:
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aar’ e 3 0,
5= 4 | oten) 3t

%5 {

The E! integral is a convolution integral (see, for example,

P
-+

_3_?;{6 (a,t ) _ u(a £ )}

p3 §2 dp + a3e<a)}1az: (10)

+
0 tem 13

Tricomi [8]), and this provides a simplification of (10) through
the assocliatlive property of convolutions We defino the function

R(E) by the integral equation
R(E) + & 5 a(g-gr) EN r=26(®) ()

which, 15 will be noted, contains the same operator on R as does
d ,

(10) on 5——- The associative property of convolutions then

enables (10) to be replaced by :

33 23 o.(a,t?) N,
& = g’R(E—E')agr - 6r4{ 5 - et

5§03 4 + a%e(a)}l. (12)
r a

- We consider an ablating hollow sphere, and take a(t) to be the

Varying,cavity radius. The surface'boundary conditions are then:
r = a(t), o [a(t),t] =1 (t); r = b(t), o [b(t),t] = £ (t) (13)

where b(t) 1s the radius of the external surface, and

—fl(t), -fe(t) are prescribed surface pressures. Since u(a,t)
is_not known é priori, the integrand in (12) contains an unknown
function of t, and 1t is conveniént to combine this with other

functions of t only and write (12) in the form
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Jdg r : o
5= = 5 R(g-E >0§,[f(t ) + a<{:)"3 0 aplags (14)
vhere

13 o splalt),e] S
£(t) = - Iagif)l f- 2=+ ulaleltl gerage), 613 .
_ . (15)
Integration of‘(lh) through the Sphere at constant real time,

using the boundary conditions (13) to glve:
| Jb(t) bd
a(t) 35 dp = £, (t) - £,(8) - (16)
reduces (1%) to an integral equation for f(t). Because E is a
function of r and t,:fhis space integral destroys the simplifying
convoiution property of the integral edﬁation over reduced time,
but, as shown below, it can be readily solvedzpumerically by
finite sum techniques. f(g) having been determined, (12)
comprises ah integral for.ggz » Space integration from a boundary -

gives ¢ , and dy 1s then determined from (4).

o

Method of solution.

‘Since the funbtions which define the probiem -- the
temperature field &(r,t), the boundary radii a(t) and b(t) and
the prescribed pressures -fl(t), -fe(t) -~ are 811 defined in
terms of real time t, and since the bénefit to be galned by using
£ as independent variable has already been achieved through the
applicaticon of convolution theory leading to (ia), it is

advantageous_to evaluate the solution in terms of the real time t.

Equaticn {14) then beccmes
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od
r:..
or

6a
r

O vt

R(E(r,t)-z(r,t')l%—t—.[r(t*) + Sx(’t )93 %—? ép]at'. (17)
a !

“Integrating by parts to obtain a more convenient form for

numerical integration yields the expression

d¢ ¥
5 = - FROe(e) + e > 35 ar)

- 3 {r(c*) +'a(L) p3 g% dp} %T:—. Rfg(r,t)-E(r,t")}atr].
| (28)
As described in [4#], a suitable finite sum approximation for the
time integral in (18) 1s obtained by placing ahead of the integral
sign a mean value of the first bracket of the Integrand. Equation
(18) can then be written in the form .

4 adr A
- v 3z = R [e(t) + n(r,t )]

n-1
- %.kza [f(tk)‘+ n(r,t,) + £(t, ;) + h(r,t, )[R, -R.]
(19)
where
R, = RIE(r,t,) - E(r,t,)] (20)
30(p,t,.)
h(r,5,) = {Tp3 gp__k_ dp (21)
a tk) ‘

and, in order to remove the constant 6a, the functions have been
normalized with the new dr given by dr/6aE81, wherxs E 138 the

instantaneous Young's modulus, and C& the maximum temperature

difference occurring.
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By integrating the finite zum equation (19) over the
radius, f(tn) 18 given in termé of its value at earlier times;
hence the terms containing f(tn) are grouped together, and (19)
is written in the form ' |

3¢ Re(t ) . R -

25X =P+ —9—i 1) - e(e )(D+ ) (22)
where
r'p = (n(r,t ) + n(r,t) + £t ;)R -R 41

- [en(r,t)) + £(t, 4R ]
n-2 o |
+ kEl[h(r,tk) + h(r, ;) +r(t) + £(t )R -R ]
and
ruD = R

n-1 °

Wé consider the case with zero surface pressure SO that
fl(t) = fz(t) = 0, and constant external radius b(t) = b.

Integration of (22) over r from a(t) to b then ylelds

b : b
0= J Pdr + f(tn_l)G - f(tn)[j Ddr + G] (23)
a(t) | a(t)

where _
h g -3 _ -3

¢ = B {la())13 - 3] .

Equation (23) determines f(tn) in the form

7 par £ .0 |
r(t,) = a(t) Sl (24)

[o Ddr + G
a(t)
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with the golution 1mhédiately after appliéation of the surface
temperature, at t=0", defiﬁing £(0) = 1. fSubstiﬁution of f(tn)
into (22) and integfation from thevfixe& outside_boundary r=b
| determines dr according to '
' R b b
25 (r,t ) = 32 [r(t) -”f(tn_l)][r'3-b’3]_- {Pdr + f(pn) ;Ddr.
C (25)

The integrals over r were evaluated by using Simpson's rulc over
most of the range, but the trapezoidal rule for a single sfep
only and the Newton-Cotes three intervél expression adjaceht‘to
the boundary r=b for odd numbers of intervals greater than one.
Next to the moving boundary, r=a(t), it was necessary to use
unequal steps in r, and;the finife sum integra@ion formuig was
chosen to give the area under a parabola through>the‘last three
points. The choice of 1n£erval size for both n and t is diécussed
in fﬁe next section where the solution is presented. The calcula-
tions were carried out on the IBM-7070 machine at the Brown
University Computing Laboratory.

The temperature variation GXr,t) was obtalned as the
.solution of the heat conduction prbblem, neglecting the coupling
between heat energy and mechanical energy dissipaﬁed in Visco-
elastic flow. For the thermal-stress problem mentioned in the
Introduction, we need the temperature field in a sphere initially
at uniform temperature, defined_as zero, and with the constant

temperature 91 at the ablating surface. To limit computational

effort on this particular problem, which is evaluated simply as
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e
[JV]

-an example of &a class of solutions, a temperature field given by

- .a relatively slmple expression was achleved by considering the

cavity to be in an infinite medium and by makihg use of the
analogy between plane and spherically symmetric heat flow
mentioned in [9). The resulting solution involves heat conduction
across the fadius r=b, which determines the outer boundary condi-
tion for the temperature distribution in the spherical shell.
We consider the tempefature field for r > a(0) = a, when the
variation _
8 -1+ B gty a2 (26)
1 VT
i1s prescribed on the surface r=a, where B, y and & are arbltrary
constants. The locus r=a(t) detérmined by Cbel éan be considered
as the ablating boundary, which can be located from the known
temperature distribution corresponding to the boundary condition
(26) at r=a, and zero initial temperature (see [c])
a ' SR 2
@I = Zlerfc x + Bt? 1erfe x + yi(h ierfc x)

3

+3t2(8 1 erfe x)] | (27)

where X = (r-a)/2(Kt)%, K being the thermal diffusivity. The
second term with B%O is needed to ensure finite initial veloclty
for the ablating boundary, and the constants were chosen to
achieve approximatély coﬁstant rate of ablation. Figure 1 shows
the resulting curve, r=a(t), for a = 2.871, B=2 and y=2000,

compared with that for constant velocity ablation. For the
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numeriéal solution the positions of the zblating boundary{
r=a(tk), were determined By solving (27) for x by Newton's
method, with the left hand sidé replaced by unlty. Equation (27)
then determines the temperature field for a(t,) <r < b, and the
resulting distributions are shown in Pig. 2 at four time values.
As seen from Fig. 1, the average velocity of ablation was
selected to complete the procesé, a(t)=b, at t = O.7a2/K? for.
the outside boundary chosen, b=3a. Immediateiy after application
of the internal heat, at t=0+, the cavlty surface is at tempera-
ture 81, with the rest of the material still_at the zero initial
temperature. The temperature field does not correspond to one
ofrthe standard boundary conditions for.heét conduction, but a
glance at the distributions adjacent to r=3a éﬁggests that the
temperature gradient is roughly proporéional to the temperature;
so that the solution approximates the radiation condition %g =
-H9. From (27) the integrals (21) for h(r,tk) can feadily be
evaluated.

As 1n the problem discussed in‘[6], the thermal stress
field was evaluated for polymethyl-mefhacrylate material
behavior using measured tenslle relaxation data. We 'use the
auxiliary function R(E) evaluated in.[hj by numerical Integration
of an integral equation equivalent to (11). The shift functioh
"o(T) used by Muki and Sternberg [5] was used, and also the same
temperature range, 9, = 30°C with the initial temperature 80°¢.
Taking K = 8 cmse/hr, and a = 4 cms, the total time of ablation
tecomes 0.7 a2/K = 1.% hrs. As discussad in [6], fomally the
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solution applisz for a range of a and K, with constant a?/z; but
since vilscoelastic characteristics for polymethyl—methacrylate
have been used, for practical interpretation the corresponding

value of K must also be substituted.

The solution

Using the material data and constants defining the
particular prcblem to be SOIVed, time and space stepsifor the
finite sum integration procedures detailed in tﬁe previous section
were determined by trial. Increments were hélved until inappre—-
ciable differences in the solution resulted. The full line in
Fig. 3 shows the variation of f(t) defined in {15), with
drja(t),t] = O for the case considered of zero cavity pressure.

It will be noted that, apart from the’ra¢tor -[a(t)]3, f£{t) then
represents the excess of the circumferential»strain at the
cavity surface over the thermal expansion there, and is tﬁus thé
strain caused by stress. It was computed according to (2%). As
detailed -in the previous section, f£(t) is the function which
links the stress values at different radii, and constifutes a
major ingredient of the stress determination. It must fhefefore.
be determined accurately, and the choilce of t;me aﬁd‘space steps
was assessed by their influence on £(t). The résults shcwn in
Fiz. 3 were calculated for Ar/a = 0.05, and for the early Stages
KAt/a27= 0.0125. The availability of ﬁémor& locations linited
the time range over which this fine time mesh could be maintaihed,

but increasins the step for intermediate times caused no 3ifficulty

¢ ~ s
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since terperature gradients, and the resulting dependent variables,
gsettle down to more gradual variation., When ablation 18 almost

complete, and only a thin shell of material remains, f(t) changes

rapidly and accuracy agaiﬁ demands a reduction in the time step.
With only a narrow shell left, smaller increments in the radius
would also be needed to maintain accuracy, and the completion of

_the £(t) curve up to Kt/'a2 = 0.7 was achieved by an analytical

expansion procedure., That the finite increments stated above

Bt

are small enough for satlisfactory accuracy 1s indicated by the

Sodtai i sk

comparisons of f(t) values computed for different finite differ-
ence steps presented in Table I. With a radius step of Ar/a=0.1

an undesirable roughness was apparént in the £(t) values due to
the change 1in the form.of the space integrals in (21) and (24)

as the number of radius increments spanning the ablating shell

changed from odd to even, and as the size of the Interval
adjacent to the ablating boundary changed. This roughness was E
not apparent for Ar/a = .05. |

The individual points plotted in Fig. 3 correspond to

- the solution for an elastic body with the elastic constants for

instantaneous loading of polymethyl-methacrylate. It i1s obtained

by simply substituting R(£) = R(0), a constant, into the visco-
el&stic analysis.
Computed values of ¢, and ¢,, evaluated from (25) and
(4) are plotted in Figs. 4 to 7 for both the viscoelastic and

elastlic cases., Use of the time and space steps found satisfactory

for determihing f(t)lead to satisfactory accuracy over moat of
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~the radius range, but to serious inaccuracles adjacent to the

ablating boundary in the viscoelastlc case. These occur because
the temperaturé rise at the ablating surface results in acceler-
ated stress relaxation due to the sensitivity of_the scale
Tactor ¢(T) to temperature. Taking the initial temperature as
the base temperature, ¢ is 103‘6 at the ablating surface, 80
that relaxation times are all reduced by this factor with the

resulting rapid stress relaxation shown. In order to improve-

“accuracy in the region of the ablating boundary, integration of

(22) for ¢, was carried out from the inner boundary a(t) using
time steps of .00125 a2/K, and space steps of Ar/a = .0125.
Corresponding values of f(t) were deduced by 1nterpolatioﬁ.
Results of these calculations are showﬁ by the circled points in
Fig. 4, and they are seen to veer smoothly: into the values
célculafed for the larger mesh away from the inner boundary.
Points corresponding to the latter are indicated by crosses and
are.seen to be apprecliably in error near the boundary. Similar
corrections were needed at later values of the'fime, thoﬁgh
somewhat larger time steps could be tolerated, and were
necessitated by machine storage limltations, unless more
elaborate programming technlques were to be utilized. As men-
tioned above, smaller time and radius steps were needed to
maintain accuracy near the end of the process when only a thin
spherical shell remained, and thesé could be incorporated since

only 2 sm2ll radius range occurred.

B i A

’f
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Study of thé results depizcted in Figs. 3'to 7.reyea1
1ntéresting features of the solutions. The stress distriﬁutions
show that the influence éf viscoelasticity is large but localized
in the heafed fegion near the ablating boundary, in conformity
with the sharp influence of temperature on viscoelasticity
through the scale factor ¢(T). The main body of the'matérial _
thus respohds'essentially elastically. The thermal expansion
near the ablating surface is resisted by the constraint of these
outer layers, and this leads to. the high peak of circumferential
compression. Immediately on application of the cavity surface
temperature @l, at t=0+, the strain is completely constrained to
remain zaro, and the cavity surface 1s subjected to a surface
compression of magnitude 0.2564, as discussed in [6] for the
solid sphere. Qualitatively, constraint of thils nature remains
until ablation 1s almost complete as indicated by ‘e variation
of £(t), which, as mentioned above,'is a function of the cir-
cunferential expansion at the cavity surface due to stress alone.
For quantitative assessment, the factor -[a(t)]3 must be taken
into account. ‘The rapld decrease in f£(t) ‘shovn in Fig. 3 when
ablation is nearly complete represents freedom for thermal
expansion when the temperature rise spreads to the outer boundary,
and a consequent decrease in magnitude of the negatlve straih due
to the compressive stress. In the elastic éase the strain juét
prior to complete ablation is entirely due to thermal expansion,
since stresses reduce to zero with no surface pressure_ acting,

and hence f(tb) = O, where a(tb) = b. Fo» the viscoelastlc case,
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thc‘dutér.ring has been stressed in tension throughout the
process, and zo a positivs residual strain due to viscoe}gstic
flow 1s superposed on the thermal strain, and f(tb) becomes
négative as shown.

An indication of the effectiveness of the constraint
“of the outer part of the sphére}ié brévided by comparison with-
the elastic solution for a cavity in an infinite solid. In‘this
case,.irrespective ofAthe form of the spherlcally symmetrical
temperature distribution, Sternberg [10] has shown that the
cavity surface displacement remains zero. Because a quasi-static
elastic solution depends only on the current geometry and
tractions,'it follows that ula(t),t] = O for the elastic solution
corresponding to our ablation pfoblem but with the outer radius
b increased to Infinity. Substituting this into the expression
for f(t) yields the broken curve shown in Fig. 3. It lies close
to the_finitebsphere solution‘at small times,‘and-the latter
gradually falls below it due to the positive radial displacement
permitted by‘the removal of restraint forces at the outer bound-
ary. It is seen that this release is quite small until appreci-
able ablatioﬁ has taken place. The reduced peak of circumferen-
tial compressive stress in the viscoelastic case reduces the
tendency for the outer shell to expand, hence reduces the
- internal displacement, and so the viscoelastic curve in Fig. 3
lies between the elastic values and that for the infinite elastic

sphere.
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The stress distributions for the ablating hollow

- sphere presented here contraszt wilth the solid sphere casé_
described in [6]. In the present case the thermal stress fieid :
dies out much less raplidly than for the solid sphere. For the_
solid sphere the heat from the ablating outer surface heats up |
the entire sphere and tq§ temperature approaches the uniform
value Ol. With decreasing temperature gradientsg the thermal
stresses, even in the elastic case, decrease rapidly with time.
The condition of heat transfer across the outer boundary in the
present case causes retention of high temperature gradients as
is clear from Fig. 2, and this leads to persistence of thermal
stresses in both the elastic andbviscoelastic cases. Tﬁermal
insu}ation of the outer boundary would reduce these.

| As in [6] the dimensions of the sphere (a=4 cms,

b=12 cms) and the temperature field (total ablation time 1.4 hrs.)
were chosen to i1llustrate a significant influence 6f thermo-
viscoelasticity. A shorter ablation time would reduce the influ-
ence of viscoelasticity for the same temperature range and scale
factor @(T). The modest te&ﬁerature range 80°C to 110°C was
chosen for comparison with previous solutions ([5] and [6]), and
the effect of temperature on viscoelasticity is so great, that
an increase in the upper temperature of the order 100°C could
increase ¢ by several factors of 10, and yleld a marked visco-
elastic effect even for ablation times of the order of seconds

In the same material. Thus quantitative estimates of dominant
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relaxation times and the variation of the scale factor @(T) are
needed to assess the expected influence of viscoelasticity.on a2
thermal stress problem.

This solution hés been presented to illustrate the
efficacy of.the integral equation approach to a thermo-visco-
elastic étress-analysis problem. Humericél solutién can be
readily processed on an electronic digltal computér, and this
enables experimentally measured viscoelastic characteristic to
be directly introduged into the anzlysis. This solution goes
beyond those previously published in this area, since the
analysis reduces to a inﬁegral equation spanning both the space

and time variables.

Ar/a & .0125 .025 . .05 |
F05) | 1592 | 1.888 | 1.60%
£(.1) 2.450 2.k4p 2.431
02 T(.2) — TS ¥.519
£(.4) -- -- 8.350
r(.05) | 1.559 | 1.562 | 1.593
y £(.1) .| 2.415 2.410 2.411
10 £(.2) 4,580 %.563 4,526
£(.4) -- 3.369 8.321

Table I. f£(t) computed using different time and space steps.
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